Technical Overview of Robotic Mapping

Kaiserslautern Robotics Research Lab Department of Computer Science University of Kaiserslautern

Jonas Mitschang, 30.6.2007

Contents

- Introduction
 - Motivation
 - Historical Overview
- Challenge in Robotic Mapping
- Types of Maps
 - Metrical Maps
 - Topological Maps
 - Metrical-Topological Hybrids
- Conclusion

Introduction: Motivation

- Solve problems / Navigation in environment
- Sensors
- Idea of storing knowledge
 - Build map autonomous, in real-time
- Highly active area in robotics and artificial intelligence
 - Many achievements in last two decades
 - Still many problems to solve

Introduction: Historical Overview

- Mapping since 1970s
- Classification:
 - Metrical and Topological
 - Today: smooth transition
 - Different advantages and disadvantages
 - Today: Hybrids
 - Robot-Centric and World-Centric
 - Robot-Centric: Simpler, no transformation
 - World-Centric: More abstracted, global map
 - Today: World-Centric
- Since 1990s: probabilistic approaches
- Simultaneous Localization and Mapping (SLAM)

Challenge in Robotic Mapping

- Chicken and Egg Problem:
 - Construct reliable map with given pose
 - Determining robot's pose in a given map
- High Dimension
 - Limited computational power
 - Dimension depends on
 - Number of objects on map
 - Type of map (metrical / topological)
 - Unlimited complex (e.g. graphical 3D-Maps)

Challenge in Robotic Mapping

Sensors

- Ambiguous sensor data (correspondence problem)
 - Temporal growing number of hypotheses
 - Detection of loops
- Measurement noise
 - All electrical devices produce noise
 - Quantization
 - Solution: Integrate while moving slowly
- Limited field of view

Challenge in Robotic Mapping

- Dynamic Environment
 - Robot is not the only moving entity in the map
 - Hypotheses on what happened with the environment (e.g. moving people, doors opened and closed)
 - Common assumption: Robot is the only moving object (approximately true for short time windows => static world)
- Exploration and Path Finding
 - Good techniques for fully modeled maps (e.g. A*)
 Not for partial maps
 - Mapping should run in real-time
 - Loss of information for each movement of the robot

Types of Maps

Classification in topological and metrical

	Topological	Metrisch
Scale	Large-scale space	Small-scale space
Sensor inputs	Abstracts sensor in-	Stores sensor inputs
	puts	
Computational effort	Low	High
Memory consumption	Low	High
Sensitive to noise	Less	More
Real-time mapping	Yes	Depends on compu-
		tational power
Resolution	Very low	High

• Choice depends on field of application and available resources

- Objects (e.g. grids, shapes) with metrical coordinates
- Finer grained than topological maps
- More computational effort
- Today: mostly two-dimensional grids
- SLAM: Simultaneous Localization and Mapping
- Unknown environment, simultaneous:
 - Constructing map
 - Tracking robot's pose
- Probabilistic approaches, e.g.
 - Kalman Filters (Bayes Filter)
 - Monte Carlo Methods

- Kalman Filters
 - Invented 1960 by Rudolf Kálmán
 - Estimate state of dynamic system with incomplete (noisy) data
 - Linear quadratic estimation (LQE): Minimize error
 - Efficient recursive (Bayes) filter
 - Incremental (SLAM)
 - Disadvantage: Does not solve the correspondence problem

- Expectation Maximization (EM) algorithm
 - SLAM alternative to Kalman Filters
 - Tries to maximize the expectation for map and pose
 - Stores all sensory inputs
 - Processes data multiple times
 - Thus: not incremental
 - Solves SLAM problem by iterating between two steps:
 - Expectation Step: Find all possible robot poses in map
 - Maximization Step: Calculate most likely map for poses

- Incremental Maximum Likelihood Method
 - Combines strength of EM and Kalman Filters
 - Simple and popular
 - Incremental => real-time mapping
 - Disadvantage: No cyclic loops

- Hybrid approaches
 - Allows cyclic maps
 - Inconsistence: Reset map to backwards in time
 - Disadvantages:
 - complex ambiguities (nested loops) not supported
 - not real-time

Discrete Segment Evolution

- Advantage: No odometry information
- Specialized for 2D range sensors:
 - 1) Approximate scan points with line segments
 - 2) Segment sorting step
 - 3) Splitting into multiple lists
- Creating the map by overlay and matching

THE ROBOTICS RESEARCH LAB

Occupancy Grid Maps

- Known robot pose (mostly no SLAM)
- Two- or three-dimensional grid
- Robust and easy to implement

Object Maps

- Store geometric shapes
- More accurate
 - Predefined objects (classes)
 - Modification of objects
- Dynamic environment: Object properties
- More compact
- Better Human-Computer Interaction

Topological Maps

- Environment as (cyclic) graph
 - Navigation information on edges
- Large-scale space
- Formal guarantees that the correct map is generated
- Less computational and memory effort

Topological Maps

TOUR Model

- One of the first topological approaches (Kuipers, 1977)
- Space is described using five entities:
 - Street networks (signatures)
 - Routes
 - Relative position of places
 - Dividing boundaries
 - Regions / Grouping

Street network signatures

Topological Maps

Spatial Semantic Hierarchy (SSH)

- Multiple levels of partial knowledge:
 - Sensory: Continuous world
 - Control: Control laws
 - Causal: Discrete states in environment
 - Topological: Topological map (places, paths, regions)
 - Metrical: Optional metrical map

Technical Overview of Robotic Mapping, Jonas Mitschang, 2007

Metrical-Topological Hybrids

Cognitive Mapping

- 2D local maps: "Map in the Head"
- Topological links: "Atlas in the Head"
 - Little by little strengthened
 - Modify erroneous connections over time
 - Strong enough: connect metrical maps
 - Store more data when more resources available

Hybrid SSH

- Extension: Local Perceptual Map (LPM)
 - SLAM
 - local path planing
 - obstacle avoidance
- Problems: simply discard LPM

THE ROBOTICS RESEARCH L

Summary

- All algorithms: Advantages and disadvantages
 - e.g. most algorithms assume static world
- Situation encouraged over last two decades
- Still much to do
 - Unstructured environment
 - outdoor: vegetation, underwater etc.
 - indoor: (moving) people
 - Other domains like multi robot mapping
- "Do the right thing" function

References

- Gregory Dudek, Paul Freedman, Souad Hadjres. Using Local Information in a Non-Local Way for Mapping Graph-Like Worlds. 1993.
- B. J. Kuipers. The Spatial Semantic Hierarchy. Artificial Intelligence, 119, 2000.
- Benjamin Kuipers. The Skeleton in the Cognitive Map: A Computational Hypothesis. 2001.
- B. Kuipers, J. Modayil, P. Beeson, M. MacMahon, F. Savelli. Local metrical and global topological maps in the hybrid spatial semantic hierarchy, 2004.
- Benjamin Kuipers. Modeling Spatial Knowledge. In IJCAI, 1977.
- B. J. Kuipers. The cognitive map: Could it have been any other way? 1983b
- S. Thrun. Robotic Mapping: A Survey. In G. Lakemeyer, B. Nebel (Hrsg.), Exploring Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002. to appear.

References

- Rolf Lakaemper, Longin Jan Latecki, Xinyu Sun, Diedrich Wolter. Geometric Robot Mapping, 2005.
- Sidomar T. Monteiro, Hideichi Nakamoto, Hideki Ogawa, Nobuto Matsuhira. Robust mobile robot map building using sonar and vision. 2005.
- E. Remolina, B. Kuipers. Towards a general theory of topological maps, 2004.
- A. Scott. Quantitative and qualitative comparison of three laser-range mapping algorithms using two types of laser scanner data, 2000.
- Benjamin Kuipers, Yung-Tai Byun. A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations. Technischer Bericht Al90-120, 1, 1990.

Thank you for your attention!

Appendix: Discrete Segment Evolution

Algorithm:

Initial map is equal to the first scan: $G_0 = S_0$

- Three steps:
 - Correspondence: New scan S_i is positioned over previous map G_{i-1} (assumes small changes, position: old pose)
 - Alignment: Rotate and translate $S_i =$ new pose
 - Merging: Combine S_i and $G_{i-1} => Result$ is new map G_i

