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1. Introduction

1.1 Motivation

Mobile robots navigate in their environment trying to reach their point of interest.
The idea is to store knowledge for improving their performance and their flexibility.
This knowledge is gathered by different sensors mounted on the robot. Goal of
robotic mapping is to exploit the robot’s sensorial capabilities to learn a model of
its surrounding environment. Nowadays the problem of exploring and mapping an
unknown environment is becoming increasingly important and is a highly active
research area in robotics and artificial intelligence (AI). Building an accurate map
of the real environment is essential for mobile robots that should interact truly
autonomous. The problem could be solved really simple if the robot had idealized
error-free perceptual capabilities. But as this is not the case (and maybe it will never
be the case) one has to refine several mapping algorithms for getting the best out of
the sensor measurements the robot acquires. The robot should be able to acquire a
model of the environment in real-time by itself. Map building algorithms allow the
acquisition of spatial models of physical environments using mobile robots.

Despite all the achievements in this area in the last two decades, it still presents
great challenges. One problem is large-scale space maps that extend beyond sensory
horizon of the robot. Large-scale space may include large nested loops and structural
ambiguities between different places in environment. This paper gives a historical
overview over robotic mapping and presents several mapping approaches with its
advantages and disadvantages.

1.2 Historical Overview

Historically there are two methods for differentiating classes of maps. On the one
hand mapping was divided into metric and topological approaches. This differen-
tiation was state of the art when robotic mapping was in the fledging stages in
the 1980s. Nowadays there is a smooth transition between metric and topological
mapping. Both types have advantages and disadvantages that are discussed later.
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Modern attempts try to implement hybrids between both types for combining their
strengths and avoiding their weaknesses.

On the other hand robotic mapping algorithms were classified into world-centric and
robot-centric. World-centric maps are stored as global spatial unit and the robot
pose has global coordinates on this map. Objects in this map in generic do not
carry information about sensor inputs. By contrast robot-centric maps store the
information about sensor measurements relative to the robot pose. Robot-centric
maps can be built easier because there are no transitions between different coordinate
systems needed but they suffer from disadvantages: It is difficult to project the local
sensor measurements to the measurements in another nearby spatial location. In
robot-centric mapping it is more difficult to decide if the robot has already been at
this place. And it is also hard to disambiguate between places that produce similar
sensor measurements. These two problems are caused by lack of geometry in the
sensor measurements. Caused by these disadvantages nowadays mapping approaches
generate world-centric maps.

In the 1990s the robotic mapping developed towards probabilistic techniques. The
mobile robot was supposed to be able to localize itself on the map and proceed
mapping with the given data. This probabilistic approach is called simultaneous
localization and mapping (SLAM, see 3.1.1) or sometimes concurrent mapping and
localization (CML). Different algorithms are used to achieve the goal of simultane-
ous localization and mapping like Kalman filters (see 3.1.2 page 10) or expectation
maximization algorithms (chapter 3.1.3).



2. Challenge in Robotic Mapping

Robotic mapping can be compared to the ”chicken and egg” problem. On the one
hand there exist many very useful algorithms for determining the robot’s pose in
a given (fully modeled) map just by analyzing the actual measurements. On the
other hand it would also be really simple to construct a reliable map if one knows
the actual robot’s pose in the environment.

The main problems in robotic mapping are the sensors that the robot uses for ob-
serving its environment. These sensors are not ideal but are victims of measurement
noise (that cannot be avoided for analog measurements and data conversion) and
range limitations (they can only sense the environment next to them). The sensor
issue and the additional certainty of limited computational power on mobile robot
systems lead to different problems:

Correspondence Problem

The correspondence problem or data association problem addresses the difficulty
of determining which sensor measurements at different time belong to the same
object and respectively the same location in the space-time continuum of the robot’s
environment. The problem comes into fore when the mobile robot has to close a
large cyclic loop. It has to detect which measurements belong to the same location
in the built map for closing the loop. Caused by the inaccuracy of localization
(odometry sensors) and the exponential growing number of hypotheses over time,
the correspondence problem is the hardest problem in robotic mapping especially on
environments with large cyclic loops (see figure 3.1).

Measurement Noise

As stated before, sensors are no ideal parts. The measurements they make suffer
from different uncertainties (see figure 2.1). All electronic devices generate more
or less noise which influences the measurements. The sensor inputs (environment)
are time- and space-continuous but after signal processing and conversion to digital
signals are both time- and value-discrete.
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The noise problem can simply be reduced statistically by sampling the data mul-
tiple times. For mobile robots this implies slower movement and map exploration.
But the measurement noise also affects control and results in pose errors and thus
accumulates over time leading to misinterpretation of the subsequent sensor inputs.

Figure 2.1: Example of odometry error

High Dimension

Each algorithm needs computational power for being completed. The problem of
robotic mapping is the high dimension of the built map. It depends on the number
of entities to store and the accuracy and type of the map to build. Topological maps
(see 3.3) just need a minimum of data to represent the environment and thus does
not consume much computational power and time. Dimension increases over metric
two-dimensional grid maps to three-dimensional visual maps. Increasing dimension
leads to serious runtime and storage problems. This prevents the robot from mapping
larger environments and performing loop closing in real-time.

Dynamic of Environment

One critical fact in most environments is that they are dynamic which means they
change over time. That means the mobile robot is not the only moving entity in
the map. Whenever a map changes the robot has to make hypotheses on what
has happened with the environment. It has to decide weather its surrounding has
changed (moving people, doors opened and closed) or weather it is located at an
other position on the map.

Many mapping algorithms assume that the robot is the only moving object in the
map and all other dynamic variations of environment are just noise. This assumption
is approximately true for short time windows because in short time the robot’s
surrounding is nearly static.

Exploration and Path Finding

Another challenge is the exploration of the robot’s environment for building the full-
fledged map. There are really good techniques for optimal robot motion on fully



7

modeled maps but this is not the case for partial maps. The mapping algorithm has
to construct the map in real-time in order to be able to explore the environment
reasonable.

One always has to keep in mind that every movement of the mobile robot (every
alternation of the robot’s pose) produces a loss of information because the new
pose is not hundred percent known and thus the successional measurement may be
misinterpreted.
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3. Types of Maps

Like stated in chapter 1.2 (page 3) maps are nowadays differentiated in metrical
and in topological maps. Metrical and topological map representations have many
differences [Kuipers 04]:

Topological Maps Metrical Maps
Scale Large-scale space Small-scale space
Sensor inputs Abstracts sensor inputs Stores sensor inputs
Computational power Low High
Memory consumption Low High
Sensitive to noise Less More
Real-time mapping Yes Depends on computational power

Topological maps describe large-scale space and abstract from sensor inputs. Local
perceptual maps capture all sensor measurements within the sensor horizon and
require plenty more resources than topological maps.

The choice of mapping algorithm is highly dependant on the field of application.
Rescue robots [Lakaemper 05] for example build global overview maps where it is
important to ensure that the whole target region has been searched. Under condi-
tions of where rescue robots are used (e.g. collapsed buildings) there is just unreliable
odometry information and landmarks are ambiguous.

3.1 Metrical Maps
The term metrical map refers to a map that consists of geometric objects (grids,
shapes etc.) that represent a environment. Metrical maps provide some advantages
over topological maps: They are finer grained (grid, polyhedra) than topological
maps and thus solve more problems at high computational price.

Nowadays most metric maps are two-dimensional grids or shapes (specified by co-
ordinates). Topological maps are less sensitive to noise but metrical maps are more
common to humans perception.
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3.1.1 Simultaneous Localization and Mapping

Simultaneous localization and mapping (SLAM) describes the problem of building
a map within unknown environment while at the same time keeping track of the
mobile robot’s pose. Caused by several uncertainties described above in chapter
2 the task of SLAM is complex. SLAM uses mostly probabilistic techniques like
Kalman filters or Monte Carlo methods and is only used for metrical maps. It can
use very different types of sensors to acquire the required data for building the map.

3.1.2 Kalman Filters for Robotic Mapping

In the beginning of robotic mapping (1985) Kalman filters were used for simultaneous
localization and mapping and they are still used nowadays [Thrun 02]. The Kalman
filter was invented 1960 by Rudolf Kalman and is referred to as linear quadratic
estimation (LQE). In general it is an efficient recursive filter that estimates the state
of a dynamic system from a series of incomplete and noisy measurements. Kalman
filters work incrementally and pertain to the SLAM approaches.

Kalman filters are Bayes filters and thus rely on basic assumptions:

• The sensor measurements must be linear with added Gaussian noise. Conse-
quential the measurement noise (εmeasure) must not be correlated. Nonlineari-
ties may be accommodated by linearization using e.g. Taylor series expansion.

• The initial uncertainty must also be independent Gaussian.

These assumptions are limitations to the Kalman filter approaches: Considering, for
example, an environment with two indistinguishable landmarks. Measuring such a
landmark will induce dependant noise which is not Gaussian. Thus Kalman filters
are not able to cope the correspondence problem.

As a solution for the correspondence problem specially for laser range scanners an
extension called Lu/Milios algorithm [Scott 00] has to be presented. It combines
two basic estimation phases:

• In the first phase Kalman filters are used to calculate posteriors over the map.

• The second phase associates data of multiple scans with each other. The
correspondence is achieved using maximum likelihood data association.

This improved version works well as long as errors in the initial pose estimate small
(e.g., smaller than 2 meters). Larger pose errors can not be accommodated.

3.1.3 Expectation Maximization Algorithms

Expectation maximization algorithms (EM) are an alternative for Kalman filters
also belonging to SLAM approaches. Nowadays they are the best solution to the
correspondence problem described in chapter 2. A huge advantage over Kalman
filters is achieved by repeatedly relocalizing the robot relative to the present map.
EM algorithms perform hill climbing on all maps in order to find the best fitting
map. That is why they cannot build the maps incrementally like the Kalman filters.
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As stated before it is really simple to construct a reliable map if one knows the actual
robot’s pose in the environment and it is also no big deal to localize the robot’s pose
in a given map. The expectation maximization algorithm solves the SLAM problem
by iterating between the following two steps to make the resulting map (mi) more
and more accurate with each step i:

• Expectation step: Generate all possible robot poses in the actual map mi (the
first map m0 is empty).

• Maximization step: Calculates the most likely map for these given pose expec-
tations.

The result of the expectation maximization algorithm are increasingly accurate maps
m0, m1, ..., mn.

3.1.4 Incremental Maximum Likelihood Method and Hy-
brid Approaches

Both Kalman filters and expectation maximization algorithms have several disad-
vantages. The errors in control accumulate over time which affect future sensor
interpretations and disturbs the built map. Kalman filters are not able to solve the
correspondence problem while expectation maximization algorithms are not working
incrementally. A common approach is the incremental maximum likelihood method.

The basic idea is to incrementally build a single map as the sensor data arrives.
Mathematically a series of maximum likelihood maps, m∗1, m∗2, ..., and a series of
making likelihood poses s∗1, s∗2, ..., is maintained. Map m∗t and pose s∗t are built from
the map m∗t−1 and pose s∗t−1 incrementally via maximization of the marginal likeli-
hood. The incremental maximum likelihood method can be viewed as a expectation
maximum algorithm without expectation-step, just consisting of a maximization-
step. Although this approach is very simple it can build maps in real-time like
Kalman filters and it maximizes likelihood like expectation maximization algorithms
and thus is really popular. But it suffers from one big disadvantage: Like all algo-
rithms that do not consider uncertainty when building maps it is not able to map
cyclic environments. In cyclic environments the error in the pose s∗t may grow with-
out bounds (see figure 3.1).

To overcome this limitation hybrid approaches try to combine their strengths and
avoid their weaknesses by maintaining uncertainty during mapping (see figure 3.2).
Unlike the incremental maximum likelihood method, hybrid algorithms are able to
correct maps backwards in time whenever an inconsistency is detected. But also
hybrid approaches have disadvantages:

• The decision to change the map backwards in time is discrete which means
that it may destroy the map if the decision is wrong.

• It can not handle complex ambiguities like multiple nested loops.

• It is not really real-time because the time needed for closing loops depends on
the size of the loop. But if environment is limited to a specific size (e.g. office
buildings) hybrid approaches work well.
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Figure 3.1: Incremental maximum likelihood method mapping is not able to handle
cycles.

Figure 3.2: Hybrid approaches use probabilities and are able to close loops which
are not too complex.

3.1.5 Discrete Segment Evolution

The goal of Discrete Segment Evolution is to build a global map from range sensors
(two-dimensional) without using the odometry information. Discrete segment evo-
lution solves the problem of statistically dependant measurement data without any
assumptions about the error characteristics. In [Lakaemper 05] the application are
rescue robots (no odometry, ambiguous landmarks) that should localize victims in
catastrophe scenarios.

Following steps are performed for converting the measured data into a scan Si (see
figure 3.3):

• Scan points are approximated with line segments. These line segments don’t
need to be connected because this would imply additional noise in the approx-
imation.

• Segment grouping step: An ordered list of segments if constructed by minimiz-
ing the sum of the distances of their endpoints.
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• Finally the ordered list is split into multiple lists at positions where the end-
point distance exceeds a defined maximum.

Figure 3.3: The figure shows the different steps of the discrete segment evolution
algorithms. a) Scan points; b) Approximated line segments; c) Segment grouping
step; d) Splitting into sublists

The first map G0 is equal to the first scan: G0 = S0 and the subsequent maps are
created by the following steps:

• Correspondence: The new scan Si is positioned over previous map Gi−1 at the
position and angle of the old pose. Correspondence is established by mapping
each segment endpoint of Si to the closes point of Gi−1. This assumes small
pose changes from scan to scan (given for high scan rates).

• Alignment : Minimize the distance between the points found in correspondence
step and the actual scan Si by translating and rotating Si. This step calculates
the new robot’s pose.

• Merging : Now the actual scan Si and the previous map Gi−1 are aligned thus
they can be merged into a new map Gi (noise is reduced on the map).

3.1.6 Occupancy Grid Maps

Unlike SLAM, occupancy grid maps work with known robot poses. They build a
metric map from noisy or incomplete sensor data and rely on the estimated pose.
Occupancy grid maps mostly use range sensors (sonar sensors or laser range finders)
for detecting objects in the covered cone in space (see figure 3.4). In general the grids
are two-dimensional (there also exist three-dimensional versions) grids of variables
representing the probability that the corresponding field is occupied. Regions of
high values represent obstacles, low values represent free space and special values
(e.g. intermediate values) represent lack of knowledge. The advantage of occupancy
grid maps is that they are very robust and easy to implement but they rely on pose
certainty.

As occupancy grid maps use Bayes filters they assume independent Gaussian noise
(see 3.1.2). With correlated noise the maps will be erroneous. This is usually the
case when sonar measurements are integrated while the robot pose does not change.
Usually this problem is avoided by discarding all sensor measurements while the
robot is not moving.
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Figure 3.4: Example of occupancy grid mapping using sonar sensor

ApriAlphaTM

An example for occupancy grid maps is the mapping algorithm that the home robot
ApriAlphaTM[Monteiro 05] uses. It implements a variation of the occupancy grid
mapping which does not use Bayes filters but an alternative simple counting method.
The mobile home robot uses a sonar sensor for observing its environment. Its occu-
pancy grid consists of cells C(i, j) that may be calculated by the following equation:

C(i, j) =
hits(i, j)

hits(i, j) + misses(i, j)

hits(i, j) is the number of cases in which the cell in (i, j) was occupied. misses(i, j)
on the contrary is the number of cases in which the cell was empty. This simplifi-
cation for the occupancy grid results in less computational effort for the robot (no
Bayes filters needed) but provides similar results. ApriAlphaTMuses a grid of 80x80
cells with a resolution of 20cm x 20cm. It has five sonar sensors with a maximum
range of approximately 2.1m. Figure 3.5 shows the environment exploration algo-
rithm of the robot: It starts with simple exploration procedure (e.g. driving straight
forward) and while driving it measures the sonar data for filling the grid map. When
an obstacle is detected, it begins to follow its boundary. Caused by the slow move-
ment speed of 10 cm

s
, features like corners and edges can be detected and matched

with the grid map in real-time.

3.1.7 Object Maps

The idea of object maps is to construct the map out of geometric shapes rather
than grids. These geometric shapes in the simplest case may just be lines. Object
mapping has several advantages over grid maps:

• The objects can change their position over time but remain the same object
(e.g. same instance / ID) with other properties unchanged. So object maps
are better for dynamic environment.
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Figure 3.5: ApriAlphaTMmap building scheme

• They are more compact especially for structured environment.

• For all objects the coordinates in space are stored thus object maps are more
accurate.

• Interaction of the mobile robot to humans can be improved because object
maps are closer to the people’s perception of the environment.

But object maps suffer from one big disadvantage: Often real environments are
too complex to represent them with simple shapes. Fine grained grid maps would
represent these environments (or objects) better than object maps. However there
are two solutions how to solve this problem: On the one hand the mapping can be
implemented as hybrid between object- and grid map. On the other hand the object
map might ad-hoc learn new objects.

When building three-dimensional maps occupancy grids are often (depends on the
sensors) not sufficient because occupancy grid maps require that each feature of the
environment can be measured multiple times for being integrated using Bayes filters.
But for some scanners (e.g. horizontal laser scanners) each feature is measured only
once. Object maps remedy this problem by assuming that the environment consists
of flat surfaces (surface-objects) and the number, position and size of these surfaces
have to be discovered. This problem can be solved by expectation maximization
algorithms (see 3.1.3).

3.2 Topological Maps
Topological maps are concise descriptions of large-scale structure of environment
[Kuipers 04]. Environment is described as a collection of places that are linked
by paths (see figure 3.6). These paths represent relations between the places and
may include additional information e.g. how to navigate from one place to another
or distance-information. An important advantage of topological maps is that it is
possible to provide formal guarantees that the correct map is generated and never
discarded [Dudek 93] [Remolina 04]. Topological maps are also built from geometric
data but processing topological maps (generation, path finding) needs less compu-
tations than for metrical maps.

The TOUR Model

The TOUR model [Kuipers 77] is a topological mapping approach that divides spa-
tial knowledge into five categories. It is originated of the year 1977 and is referenced
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Figure 3.6: Example of a topological map (right) constructed out of a real environ-
ment (left).

in chapter 3.3.2. All representations provide a special range of states of partial
knowledge and are able to solve a certain range of problems.

• Routes represent sequences of actions taking the traveler from one place to
another. Three sources are needed for representing a route description: Ob-
servations of the Environment, recalled old routes, and intermediate states of
the route-planning process.

• Street networks are represented topologically by descriptions of streets and
places and of the local geometry of the intersection of two streets.

• Relative positions of two places are stored as two-dimensional vector.

• Dividing boundaries define regions on either side. The kind of knowledge
dividing boundaries offer is particularly useful in route-finding.

• Regions related by their containment provide useful levels of abstraction for
stating relations among their elements. Regions allow places to be grouped
and referred to collectively.

3.2.1 Spatial Semantic Hierarchy

The spatial semantic hierarchy (SSH, basic SSH) is a computational model of knowl-
edge of large-scale space [Kuipers 00]. Large-scale space is defined as space whose
structure is a much larger than the sensory horizon of the robot. So the mobile robot
has to travel through the space, gathering local observations and finding their spacial
relationship. It consists of multiple different interactive but related representations
for space. The multiple levels of the SSH expresses states of partial knowledge (see
figure 3.7) [Kuipers 90]:

• The sensory level deals with continuous sensing of the continuous world.
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• The control level describes the world in terms of continuous control laws. It
is used to navigate among distinctive states of environment and thus supports
higher level behaviors. These distinctive states eliminate cumulative position
errors while moving (but not while exploring). Local geometrical maps improve
the speed of finding a distinctive state because hill-climbing is no longer needed.

• The causal level abstracts the environment to discrete states. As the causal
level is sequence of control laws (trajectory-following and then hill-climbing)
reliably takes the agent from one distinctive state to another. The sequence of
control laws is called action A. View V and V ′ are the sensor inputs before
and after the action A. Their association is represented by 〈V, A, V ′〉.

• The topological level is a topological model with places, paths and regions
and their connectivity of the robot’s environment. The minimal set of places,
paths, and regions required to explain the set of observed views is created.

– A place is zero-dimensional point that may lie on paths.

– A path describes a one-dimensional subspace of environment. Travel ac-
tions may between places take place on paths.

– A region represents a two-dimensional subset of environment.

• The metrical level represents a global geometric map of the environment in a
single frame. This level is useful sometimes but it is rarely essential. It requires
relatively high computational effort but can simply be omitted if not needed.

SSH can be improved by using local metrical and global topological hybrid ap-
proaches as described below (page 18).

Figure 3.7: Levels in spatial semantic hierarchy

3.3 Metrical-Topological Hybrids
As stated on page 9 metrical and topological mapping algorithms have a very differ-
ent character. Hybrid approaches try to combine both types for aggregating their
advantages and avoiding some disadvantages. The most common hybrid mapping
type is the hybrid spatial semantic hierarchy.
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3.3.1 Hybrid Spatial Semantic Hierarchy

The hybrid spatial semantic hierarchy extends the basic SSH by a local perceptual
map (LPM) which is a metrical map resulting from applying an online SLAM method
to a simple local region. This local metrical map can be used for local motion planing
and obstacle avoidance and can utilize any reliable metrical mapping, preferably
occupancy grids. Hybrid SSH suffers from several advantages that aid online map-
building:

• Local motion and collision avoidance can take place within the LPM.

• Metrical localization can be done quickly when searching for a distinctive point.
The SSH hill-climbing is not needed any longer. If the mobile robot is out of
resources for processing the local perceptual map it can still fall back to basic
hill-climbing.

• Ambiguities caused by closing large loops or false positive place matches can
be represented by a set of alternative topological maps which may be discarded
by future observations.

3.3.2 Cognitive Maps

Cognitive maps are related to the human perception if its environment [Kuipers 01].
They combine metrical and topological maps for avoiding their weaknesses. Cogni-
tive maps describe the knowledge of large-scale environment that is acquired by inte-
grating observations gathered over time, and are used to determine relative positions
of places for finding routes. Thus the mobile robot integrates local observations in
the large-scale environment rather than being perceived from a single vantage point.

As usual in robotic mapping the robot must be simultaneously building the map,
planning its activities (path planning), solving problems, and dealing with inter-
rupts (hazards / collision avoidance during travel). Thus the cognitive mapping
algorithm must operate under limitations of resources: The map is initially created
analog to the environment into a two dimensional map that is called ”Map in the
Head” [Kuipers 83b]. While traveling the robot will add more places to its store of
knowledge, drawing a progressively more complete map of its environment. This
two dimensional analog map is not sufficiently powerful to serve as cognitive map
because is has too few states of partial knowledge that causes several problems:

• Errors of odometry propagate over time and become very serious so the map
must offer probabilistic methods.

• If an error is detected (which is only a question of time) no corrections can be
worked out.

• Large computational effort for correcting the analog map when erroneous ori-
entation is detected.

• During correction process the map could be left in inconsistent state.
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So it is necessary to store spatial relationships between certain places while tolerating
ignorance of relationships between others. This leads to the topological mapping
approach. The idea is to build multiple two dimensional maps of the environment in
different places (”Map in the Head”) and connect them via topological information
(”Atlas in the Head”). These topological information can be described like stated in
TOUR model [Kuipers 77] (see section 3.2). While exploring the environment the
robot creates links among places to connect the several maps in the atlas to one
unified structure.

Cognitive maps have several advantages:

• If further resources become available or if new observations are made the topo-
logical connections between the metrical maps can be strengthened.

• When the topological connection between metrical maps is strong enough (ex-
actly known) the maps may be joined together.

• Topological connections that are learned incorrectly can be easily modified
without needing to analyze and process metrical data.
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4. Conclusion

Several mapping approaches have been presented in this paper and their relative
strengths and weaknesses were pointed out. All approaches are different versions of
Bayes filters and thus they are probabilistic. Of course they have to be probabilistic
to deal with the real environment. Most algorithms assume a static world but the real
world is really dynamic. They approximate the static world by evaluating small time
differences which is far away from reality. We need technologies for understanding
environment dynamics rather than just adapting changes.

Although the situation encouraged over the last two decades of research there is still
much to do. Unstructured outdoor environment like vegetation or water (underwa-
ter) environments are problematic. As computational power of embedded devices is
becoming bigger and bigger and the resources available for mapping algorithms also
increases in future other mapping approaches might be thought of.

In future there will be new application domains for other mapping approaches like
e.g. multi robot mapping, thus the emerging correspondence problem will be much
more complex than nowadays. Robot control has to be improved so that robots
just have the function to ”do the right thing” [Thrun 02]. So in future mapping will
continue to be a highly active research area in robotics and artificial intelligence.
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