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Abstract

Embedded systems are becoming more and more important in today’s life in many
ways. They can be found in dishwashers, mobile phones, coffee machines, PDAs,
etc. Although there is no common definition of what an embedded system is, it
can be generally defined as a special-purpose information processing system, con-
taining both: software and hardware. Embedded systems are integrated in a larger
systems which interact with environment for achieving a set of predefined tasks or
applications.

In general, embedded systems are characterized by resources scarcity, among which
energy is becoming more and more important (especially the energy consumed by
the processor). The energy consumed by an embedded system is strongly influenced
by the software running on it (the embedded software). That is why it is crucial to
explore the software characteristics that have an influence on the energy consump-
tion, and to understand how this influence could be represented. In order to realize
this task, there is a need for the construction of a reliable measurement platform for
energy consumption by embedded devices.

The target of this work is to design and implement a framework for measuring
energy consumption of embedded software. This framework is based on the XScale[1]
architecture, a popular Intel[14] platform designed for energy aware applications.

The framework has a software repository which contains a number of programs (user-
defined) that are supposed to run on the mentioned platform. These program codes
are the input of the framework. Automated measurements for energy consumption
are performed on all programs for gathering the required information. In the context
of this work, a first evaluation of the framework was performed to make an initial
check its quality.

Keywords: Embedded software, Intel XScale, power / energy consumption, mea-
surement, framework
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1. Introduction

Nowadays mobile applications are becoming more and more important. In the year
2005 79.2 million mobile phones were registered in Germany according to the CIA
World Facebook[3]. These mobile applications are mostly battery powered and have
to be recharged sooner or later. In order to reduce the energy consumption of a
system, it is necessary to know the behavior of the system and its components
concerning energy consumption. To investigate this topic, a reliable measurement
platform for energy consumption is needed. The energy consumption depends on
the used hardware and on the used software. It is important to determine the way
software influences the energy consumption of the whole system for being able to
improve the software for better usage of energy.

This framework is based on the XScale[1] architecture, which is already optimized
for low energy consumption and which is primarily designed for mobile applications
like PDAs, mobile phones, mobile gaming consoles etc. In these applications a high
battery lifetime and thus low wattage is desired. If a system had energy aware soft-
ware and thus consumed less energy, batteries with less capacity (which are cheaper)
would be used and production costs would decrease. Taking into consideration the
huge number of products, a lot of money could be saved and a vantage on the market
could be achieved.

If it is possible to estimate the energy consumption of a system while developing it,
and if it is possible to reduce its energy consumption by optimizing the software,
there would be a huge potential of saving production costs. Companies with energy-
aware software have a competitive advantage against companies that do not put
efforts into energy efficiency.

Existing platforms have limitations concerning for example the accuracy, so a mea-
suring framework fulfilling the requirements has to be built. The goal of this work is
to develop a reliable energy measurement platform (energy consumption of different
parts of the system) for a specified platform (XScale architecture) which includes
the construction of the needed measuring hardware and the implementation of the
required software. The platform is extensible in its qualities and may easily be
migrated to other systems.

This work is organized as follows: As this work deals with measuring energy of
given systems chapter 2 gives an introduction on embedded systems and why it is
of fundamental relevance to improve their energy performance. Chapter 3 provides
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information about different approaches for gathering information by simulating a
system or by direct measurements on the real platform. The design of the energy
measurement framework is discussed in chapter 4. For implementing the measure-
ment platform different parts were required. Chapter 5 presents the used framework
parts and their implementation. In chapter 6 the framework is evaluated concerning
the previously introduced challenges. Finally chapter 7 summarises the achievements
of this work and provides an outlook on future work.



2. Embedded Systems and Energy

Consumption

2.1. Embedded Systems

Embedded systems are becoming more and more important in today’s life. An em-
bedded system is a special-purpose information computing system that is integrated
in a larger system that interacts with its environment:

Figure 2.1.: Embedded systems overview

Nowadays, they are used to provide complex add-in values for many systems in differ-
ent fields of application like e.g. industrial automation, communication technology,
consumer electronics, automotive industry and signal processing.

Often these embedded systems (especially for consumer electronics and automotive
industry) are battery powered. Certainly a high lifetime is desired for the battery
powered embedded systems. The limitations embedded systems have, are described
in the next section.

2.2. Resources Scarcity

In general embedded systems are produced in a large number of units (high cumu-
lative costs) or with limitations concerning size or weight. These are the reasons
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Figure 2.2.: Example of an embedded system
Railway Technology[26] Embedded System Module with PowerPC processor(1) and
memory(2).

for resources scarcity of embedded systems: the computing power (processor speed),
the available memory and the battery capacity are limited.

To increase the lifetime of a battery powered system there are two options:� On the one hand it is necessary to have powerful batteries.� On the other hand the energy consumption of the system should be as optimal
as possible.

In order to optimize the energy consumption one should be aware of the effects
software has on the energy consumption of the whole system. If the device consumes
less energy, it will result into higher lifetime or alternatively smaller (weaker and
thus cheaper) batteries will be used and the device will be produced cheaper. As
additional bonus this will also reduce the systems physical dimensions.
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Figure 2.3.: Development of the battery price per watt hour since May 2003[27]
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In the last years the price for one watt hour of battery capacity has not changed
significantly (Figure 2.3). In May 2003 one watt hour cost 1.60$ while it costs 1.65$
nowadays (October 2006).

Due to the high number of up to hundreds of thousands of devices much money
could be saved by optimizing the software for energy consumption. For analysing the
effect of software on power consumption in detail, a reliable measurement platform
is needed.

Non-functional properties

Non-functional properties are ”the qualities we desire of a problem solution other
than those concerning its functionality.“ [2]. Non-functional properties imply a num-
ber of design decisions, like e.g. synchronization, protection, reliability, scalability,
isolation and last but not least the energy consumption. The non-functional prop-
erty production cost depends on other properties (like energy consumption). It is of
fundamental relevance for embedded systems.



3. Related Work

3.1. Simulators

Simulators (Figure 3.1) are used to study how a system works based on a model of
this system. A model is a abstract mathematical description of the real system. The
simulator is supplied by a given set of controlled inputs and behaves “almost like”
the real system to generate the simulated results (simulated output). The simulator
behaviour may be modified by parameters and constraints to perform tests and
optimizations in detail.

Figure 3.1.: Generic simulator

By changing parameters and inputs (like the software which is running on a specific
device) of this system (in this case: embedded system) predictions can be made on
how the system reacts to these changes and how the system behaves in this case.
Computer simulations are a useful part in many domains but all results are based
on the constructed model which is never perfect.

Concerning energy consumption nowadays there exist different simulators in this
domain. I want to introduce two of them in this chapter: Avrora (3.1.1) and Platune
(3.1.2).
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3.1.1. Avrora

Avrora[4] is a research project of the University of California, Los Angeles (UCLA)
Compilers Group[8]. It combines a set of simulations and analysis tools for programs
written for specific architectures like the AVR microcontroller produced by Atmel[7]
and the Mica2 sensor nodes. Avrora includes the following features:� Simulator for testing programs with cycle accurate execution times� Profiling utilities� gdb hooks for source-level debugging� Control flow graph tool for generating graphic flow diagrams� Energy analysis� Stack checker

Avrora is a well documented open source project which is written in Java and de-
signed to be easily extendable. Besides all the advantages of avrora there is one
major disadvantage: the supported micro controller is not compatible to the XScale
instruction set. I want to analyse the energy consumption of complex XScale pro-
grams but avrora only supports AVR micro controllers with a maximum of up to
128kB program memory. So avrora is absolutely not suiting the needs in this case.

3.1.2. Platune

Platune [5] is a simulation and exploration environment for a parameterized System-
on-Chip (SOC)[6] architecture (Figure 3.2).

System-on-Chip means that all electric components e.g. processor, IO (digital and
analog), memory etc. and also the software are embedded into one device. SOC is
typically used for embedded systems.

The Platune architecture simulates a MIPS[9] processor:� MIPS CPU instruction set� MIPS data and instructions cashes� CPU to data cache buses� Memory� Instruction and data cache to memory bus

Platune comes with a C compiler that compiles the applications for the target MIPS
architecture. Platune is limited to the MIPS architecture and does not support
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Figure 3.2.: System-on-Chip

the modern energy aware XScale platform yet. Platune can mainly be used for
qualitative evaluation of energy consumption as it is not accurate enough and does
not meet the demands.

3.2. Real Platforms

A real platform (Figure 3.3) with a hardware processor and peripherals is needed for
measuring the real energy consumption without any simplifications that are made
by each simulator model (as no model is as accurate as nature).

Figure 3.3.: Real platforms

The real platform, alike the simulator, is supplied by a given set of controlled in-
puts. The difference is that the results (outputs) can be directly measured with the
suitable measuring equipment. These real (not simulated) data reflects the physical
behaviour (accurate) and not just similarities.
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The gathered system information could be used to improve the accuracy of a given
power simulator but this is not the consideration of this work. In this case a real
platform (XScale DevkitIDP, see 5.1 page 18) is used.



4. Framework Design

4.1. Framework Requirements

The framework measures the energy consumption of the core processor (CPU) of
the embedded system (see 4.3). It should be extensible for capturing the energy
consumption not only of the core but also of other modules in the future (see 7,
page 34). The power consumption measurements made at any point of time have
to be written to a log file for being able to analyze the energy of each section of a
program.

The acquisition rate of the energy data has to be adjustable. On the one hand this
allows to track the energy consumption of function calls of the program that are
taking a really short time. And on the other hand this allows to evaluate energy
consumption of programs with long runtime (of several hours or days).

4.2. Framework Overview

Figure 4.1.: Overview over the energy measurement platform
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Figure 4.1 shows the synopsis of the energy measurement platform:� The development board loads the image files from the program pool using TFTP
boot [17].� One task of the program loader module (see 5.4, page 25) is to control the
development board using the serial line (RS232) [18]. It ensures that the
board loads all program images (images are the compiled program binaries in
a specific format) successively and starts them.� While programs are running, the amplifier module (see 5.2, page 21) amplifies
the measured signal and transmits it to the data acquisition card.� The acquisition card (see 5.3.1, page 23) samples the signal and passes it to
the program loader module.� Inserting the calculated energy values into the result database is done by the
energy calculator.

4.3. Energy Measurement Theory

The power PCORE that is consumed by the application processor is the product of
the core voltage UCORE and the current flow ICORE:

PCORE = UCORE · ICORE (4.1)

Figure 4.2.: Measuring the core current

According to Kirchhoff’s laws, the current through the core ICORE equals the current
through the sense resistance ISENSE plus the current through the amplifier module
IAMP . As the amplifier module (chapter 5.2) has a very high input impedance of
10GΩ the current IAMP through the amplifier module is very small (IAMP < 0.1nA)
in comparison to the current through the sense resistance (IAMP << ISENSE) and
can be ignored in the calculation. The supply voltage UCORE of the core can be
calculated based on the voltage drop USENSE over the resistance (Figure 4.2).

UCORE = U − USENSE (4.2)



4.3. Energy Measurement Theory 17

According to Ohms law, ISENSE equals the ratio of the voltage USENSE which is
measured and the resistance RSENSE:

ICORE = ISENSE + IAMP ≈ ISENSE =
USENSE

RSENSE

(4.3)

Inserting formula 4.2 and 4.3 in formula 4.1 yields:

PCORE = (U − USENSE) ·
USENSE

RSENSE

=
U · USENSE − U2

SENSE

RSENSE

(4.4)

The energy that is consumed by the processor is the integral of the power PCORE

over the time t. Inserting formula 4.4 leads to:

E =

∫
PCORE(t)dt =

∫
U · USENSE(t) − U2

SENSE
(t)

RSENSE

dt (4.5)

Because the amplifier module has a gain of G = 99.8 (see chapter 5.2, page 21), the
measured voltage UAD results to UAD = G · USENSE. The consumed energy can be
computed by measuring the voltage drop at the sense resistance over the time t:

E =

∫
U · G−1

· UAD(t) − G−2
· U2

AD
(t)

RSENSE

dt =
1

G2RSENSE

·

∫
(U ·G·UAD(t)−U2

AD
(t))dt

(4.6)

=
1

99.82 · 0.1Ω
·

∫
(1.5V · 99.8 · UAD(t) − U2

AD
(t))dt (4.7)

The data acquisition hardware acquires up to N = 100000 samples per second.
Hence, the time interval for one sample results to ∆t = 1s

N
. So the calculation of the

energy consumption can be transformed into the following sum:

E =
1

99.82 · 0.1Ω
· ∆t ·

T

∆t∑
n=0

1.5V · 99.8 · UAD(n · ∆t) − U2
AD

(n · ∆t) (4.8)

Keeping this in mind one can see that the intrinsic calculation of the energy con-
sumption is straightforward and can be really simply realized:

Listing 4.1: Pseudocode of energy calculation for a given voltage log$E = 0 # Initial energy = 0

read $delta_t from <logfile > # Samples per second setting

for $U in <logfile > do$E += 1.5 * 99.8 * $U - $U^2
done$E *= $delta_t/(99.8^2 * 0.1) # Unit: volt^2 * sec / ohm =

joule

print "Consumed  energy: $E Joule"



5. Framework Implementation

5.1. Development Board

The DevkitIDP from BSquare [11] was chosen as energy consumption measurement
platform. It is based on the Intel[14] XScale[1] PXA255 Application Processor (Fig-
ure 5.2) and provides all necessary features:� It is a platform designed for low power consumption and will be used in the

future in this context. Nowadays the Intel XScale application processor is
already used for example in mobile phones and Personal Digital Assistants
(PDA).� JTAG[19] interface for debugging and writing flash images (see 5.1.1).� Measurement points for acquiring the power consumption of different parts of
the board (see 5.1.2).� Ethernet interface for loading the programs to the board (see 5.1.3).� Serial line for receiving the outputs of programs that are running on the board.

Figure 5.1.: DevkitIDP system diagram taken from the datasheet.
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Figure 5.2.: DevkitIDP development board based on the Intel PXA255 Application
Processor

5.1.1. JTAG-Adapter and Software

JTAG (Joint Test Action Group) was standardized in 1990 as the IEEE Std.1149.1-
1990 and is used for testing printed circuit boards using boundary scan. For burning
software images on the development board flash memory and for debugging purposes
a JTAG-Adapter is required. Figure 5.3 shows the schematic of the JTAG-Adapter.
It connects the printer port (LPT) of the computer with the JTAG header J15 of
the development board.
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Size (H x W x D) 10 in x 12 in x 16 in (25.5 cm x 30.5 cm x 40.6 cm)
Weight 8 lb (3.6 kg) with power supply
Processor Intel PXA255 running at 400 MHz

32 MB Intel Strataflash® NOR flash
32 MB M-Systems Millenium Plus NAND flash

Touch screen Two resistive 4-wire touch controllers
Video Full VGA color Sharp LM8V302
Audio AC ’97 (Philips UCB1400)
PCMCIA Two PC Card Type II slots
Secure Digital Via Secure Digital connector USB
Radio Bluetooth serial connector
Serial ports Three configurable ports
Ethernet 10/100 BaseT
Expansion Buses Multiple
Power Management Supports Five Modes
Debugging JTAG

Table 5.1.: DevkitIDP Specification Highlights

Figure 5.3.: JTAG interface PCB (left) and schematic (right)

In this case the Universal Bootloader [20] is used (see 5.1.3) as boot image. On
the original BSquare [11] DevkitIDP CD is a JTAG software called FLASH255 which
programs ROM images into the flash memory using this JTAG adapter.

5.1.2. Measurement Points

The DevkitIDP board provides several measurement points (TPx) and jumpers (Jx)
for testing the board (core, memory, peripherals). In this case the jumper J29 and
test point TP2 are used for measuring the core current.



5.2. Amplifier module 21

J29 supplies the PXA255 core with power. The board is shipped with jumper J29

closed. It was replaced by a sense resistance RSENSE = 0.1Ω resulting in a voltage
drop which depends on the core current (Figure 5.4). This voltage drop signal is
connected over a shielded twisted pair cable to the amplifier module (see 5.2). The
shield of the twisted pair cable is linked with the board signal ground on TP2.

Figure 5.4.: Measuring the core current of the DevkitIDP board
The IN-1, IN-2 and IN-3 pins are connected to the amplifier module (see below) for
amplifying the applied signal.

5.1.3. Universal Bootloader

U-Boot [20] is an open source bootloader for several architectures including Intel
XScale PXA255 under General Public License. The U-Boot image (uboot.img) is
transfered to the development board flash memory using a JTAG adapter (see 5.1.1).

The communication with U-Boot is done over console (which is attached to the
development board) or in this case over serial line[18]. Using U-Boot makes it possi-
ble to transfer programs to the XScale board using the network interface (protocol:
TFTP [17]) and run them out of the volatile memory. Appendix A (page 38) shows
an overview of the U-Boot command set.

5.2. Amplifier module

The voltage drop signal that is measured with about 20 millivolts is very weak. The
voltage is a differential signal, so the amplifier has two important tasks:� Amplify the signal by a factor of 100. So the resulting signal has the dimension

of 2 volts.� Making an absolute signal out of the differential signal. The absolute signal
can be sampled using standard methods without using acquisition cards with
differential inputs.
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The type of amplifier that performs these two tasks is called instrumentation am-
plifier.

Figure 5.5.: Schematic of the instrumentation amplifier module

Figure 5.5 shows the schematic of the instrumentation amplifier module. The IN-pins
are connected to the development board while the PWR-pins supply the amplifier
with a symmetrical supply voltage of ±12V . The OUT-pins are directly connected
to the ADC-Card.

Resistor R1 sets the gain G of the module. The gain equation is:

G =
49.4kΩ

R1
+ 1 ⇔ R1 =

49.4kΩ

G − 1

With a resistance of R1 = 500Ω in the framework the gain results to G = 49.4kΩ
500Ω

+ 1
which at least enable us to capture the signal.

Gain G = 99.8 ⇒ UOUT = 99.8 · UIN
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Figure 5.6.: Instrumentation amplifier printed circuit board

Figure 5.6 shows the PCB layout of the amplifier module. The core of the module
is the Analog Devices [16] AD620. The amplifier needs a symmetric power supply
which is provided by two 12 volts lead batteries.

5.3. Data Acquisition Module

5.3.1. Acquisition Hardware

For capturing the amplified signal the high speed data acquisition card NI-PCI-
6032E (Figure 5.7) from National Instruments [15] is used. It performs up to 100
thousand samples per second at a resolution of 16 bit simultaneous on 16 analog
input channels. At present only one channel is used for measuring the PXA255 core
current.

In future it is possible to extend the platform for concurrent measuring of the energy
consumption of the memory and peripherals.
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Figure 5.7.: National Instruments data acquisition card NI-PCI-6032E

5.3.2. Acquisition software

For sampling the signal the Linux Control and Measurement Device Interface (COMEDI
[10]) is used by the acquisition software myscope. It is based upon the Linux kernel
2.6.12.2 [21] with the RealTime Application Interface (RTAI [12]) from Dipartimento
di Ingegneria Aerospaziale - Politecnico di Milano (DIAPM [13]).

RTAI provides hard realtime functionality for writing programs with strict timing
constraints like data acquisition. It consists of a patch for the Linux kernel, API
and testsuites.
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Figure 5.8.: Screenshot of the oscilloscope software.

The acquisition software reads the sampled values from the digital analog converter
and has two modes to output the data. See appendix B, page 41 for more details.� In the display mode (Figure 5.8) the program shows the voltage signal in

realtime to get a coarse impression of the power consumption.� The second mode logs the voltage with a given conversion time (e.g. 10.000
samples per second) to a logfile. In this operation mode myscope provides a
named pipe (FIFO) that allows to insert labels in the logfile. The program-
loader module (see 5.4) sends the outputs of the board to this named pipe for
associating the sections of the XScale program to the acquired data.

5.4. Program-Loader Module

For automatically analyzing multiple programs the program-loader module performs
the following actions (Figure 5.9):� Compiling all source codes in the specified directory
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the TFTP (see 5.1.3) directory e.g. /tftpboot� The module communicates with the Universal Bootloader over serial null mo-
dem and issues the commands to load (tftpboot) and run (bootm) the images� While the program is running the acquisition software (see 5.3.2) records the
core current of the PXA255� The output (stdout) of the program running on the board is forwarded through
the serial line and is inserted in the core current log file at the proper position
for being able to track the power consumption of several sub sections of the
program� For a specific section of the executed program the energy consumption can be
calculated from the voltage drop over RSENSE using specific formulas (see 4.3
on page 16)

Figure 5.9.: Program-loader module



6. Framework Evaluation

6.1. Benchmark Repository

6.1.1. Repository Requirements

Focusing on high level programming languages (C in this case), the GNU[22] C
compiler gcc[23] is used. It provides different optimization levels and also optimiza-
tion for the binary size or program runtime. A gcc optimization scheme for energy
consumption in future is imaginable (see 7, page 34).

Energy consumption of assembly instructions and machine code are not topic of this
framework evaluation.

The programs that are evaluated should be available in different versions to ease the
comparison:� Program flow: Iterative or Recursive� Used data types and structures: Simple types (int, long, float, double ...),

lists, trees, graphs etc.� Algorithm complexity class: Runtime complexity and memory complexity� Different optimization levels (compiler optimization: see table 6.1)
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Option Description

-O or -O0 Do not optimize. This is the default.
-O1 Optimize. Optimizing compilation takes somewhat more time, and

a lot more memory for a large function.
With -O, the compiler tries to reduce code size and execution time,
without performing any optimizations that take a great deal of
compilation time.

-O2 Optimize even more. gcc performs nearly all supported optimiza-
tions that do not involve a space-speed tradeoff. The compiler does
not perform loop unrolling or function inlining when you specify
-O2. As compared to -O, this option increases both compilation
time and the performance of the generated code.

-O3 Optimize yet more. -O3 turns on all optimizations speci-
fied by -O2 and also turns on the -finline-functions and
-frename-registers options.

-Os Optimize for size. -Os enables all -O2 optimizations that do not
typically increase code size. It also performs further optimizations
designed to reduce code size.

Table 6.1.: GNU C compiler optimization levels (from gcc manual page)

6.1.2. Sorting algorithm repository

For testing the power measurement platform several sorting algorithms from [24]
can be used because they are described well and are already classified to complexity
classes and program flow style. I got 41 of these algorithms to compile for the
target PXA255 processor. These 41 algorithms can be executed and evaluated using
different data sizes.

Caused by the limited time of this project thesis, it is unfortunately impossible to run
the whole software repository that was intended and already prepared. So there is no
analysis performed in this project thesis; instead the energy measurement framework
is verified to match the development board data sheet power characteristics.

6.2. Measurement Results

The framework is qualitatively evaluated to check its functionality and its accuracy.
Figure 6.1 shows a screenshot of the oscilloscope application capturing the energy
consumption for the Windows boot. Labeled positions are:� Switching on the supply power of the development board.



6.2. Measurement Results 29� Windows booted successfully and is in idle state (showing the desktop on the
display)

Figure 6.1.: Screenshot of the oscilloscope application capturing the energy con-
sumption for the Windows boot.

The windows boot process shows many different power states for the PXA255 appli-
cation processor. The boot process is evaluated and compared to the PXA255 data
sheet below (chapter 6.2.1).

Figure 6.2 shows a screenshot of the oscilloscope application capturing the energy
consumption for suspending and resuming windows. Labeled positions are:� Pressing suspend in the Windows start menu� The system is completely suspended and consumes about 60µA (see Table 6.2)� Pressing the wake up button on the development board� Windows resumed normal operation successfully and is in idle state (showing

the desktop on the display)
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Figure 6.2.: Screenshot of the oscilloscope application capturing the energy con-
sumption for suspending and resuming windows.
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Symbol Description Typical Maximum Units

400 MHz active mode

Vcc 1.3 1.65 V

Vccq/Vccn 3.3 3.6 V

Temp Operating temperature 21 100 �
Iccc Vcc Current 245 800 mA

Iccp Vccq and Vccn Current 28 355 mA

PTOTAL Total Power 411 2598 mW

300 MHz active mode

Vcc 1.1 1.43 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 185 570 mA

Iccp Vccq and Vccn Current 24 345 mA

PTOTAL Total Power 283 2057 mW

200 MHz active mode

Vcc 1.0 1.32 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 115 340 mA

Iccp Vccq and Vccn Current 19 330 mA

PTOTAL Total Power 178 1637 mW

400 MHz idle mode

Vcc 1.3 1.65 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 95 460 mA

Iccp Vccq and Vccn Current 9 50 mA

PTOTAL Total Power 121 939 mW

300 MHz idle mode

Vcc 1.1 1.43 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 43 335 mA

Iccp Vccq and Vccn Current 9 50 mA

PTOTAL Total Power 77 659 mW

200 MHz idle mode

Vcc 1.0 1.32 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 33 205 mA

Iccp Vccq and Vccn Current 9 50 mA

PTOTAL Total Power 63 451 mW

33 MHz idle mode

Vcc 1.0 1.32 V

Vccq/Vccn 3.3 3.6 V

Iccc Vcc Current 15 70 mA

Iccp Vccq and Vccn Current 9 50 mA

PTOTAL Total Power 45 272 mW

Sleep mode

Vcc 0 0 V

Vccq/Vccn 3.3 3.3 V

Iccp Vccq and Vccn Current 45 75 µA

Table 6.2.: Power Consumption Specifications for PXA255 processor



6.2. Measurement Results 32

6.2.1. Evaluation of the windows boot process

Figure 6.2.1 shows the digital analogue converter card values sampled while booting
windows mobile. The noisy peaks at the start and the end of the sampled data are
produced by the DevkitIDP power switch.
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Figure 6.3.: Samples of the analogue digital converter card while booting windows.

In figure 6.2.1 the samples are translated into the power dissipation using formula
4.4 discussed in chapter 4.3:

PCORE =
U · USENSE − U2
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Figure 6.4.: Power consumption of the PXA255 processor while booting windows.

Figure 6.2.1 finally illustrates the energy consumption of the application proces-
sor. The energy consumption is calculated out of the previously calculated power
dissipation using formula 4.5:

E =

∫
PCORE(t)dt
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Figure 6.5.: Energy consumed by the PXA255 processor while booting windows.

Listing 6.1: Analysis of Windows boot
------------------ Configuration -----------------

Ref 0 = -10.00 Volt

Ref 1 = 10.00 Volt

Frequency = 100000.00 Hz

------------------ Calculating -------------------

sample 65536: Uad =0.00 V power= 0.7 mW energy =0.01 uJ total energy =0.000 J=0.00 mWh

sample 131072: Uad =2.25 V power =326.2 mW energy =3.26 uJ total energy =0.083 J=0.02 mWh

sample 196608: Uad =2.35 V power =340.1 mW energy =3.40 uJ total energy =0.315 J=0.09 mWh

sample 262144: Uad =2.36 V power =341.5 mW energy =3.41 uJ total energy =0.545 J=0.15 mWh

sample 327680: Uad =2.57 V power =371.4 mW energy =3.71 uJ total energy =0.795 J=0.22 mWh

sample 393216: Uad =2.38 V power =345.0 mW energy =3.45 uJ total energy =1.039 J=0.29 mWh

sample 458752: Uad =2.88 V power =415.7 mW energy =4.16 uJ total energy =1.280 J=0.36 mWh

sample 524288: Uad =3.23 V power =464.6 mW energy =4.65 uJ total energy =1.477 J=0.41 mWh

sample 589824: Uad =3.08 V power =443.3 mW energy =4.43 uJ total energy =1.777 J=0.49 mWh

sample 655360: Uad =0.65 V power= 95.1mW energy =0.95 uJ total energy =1.918 J=0.53 mWh

sample 720896: Uad =0.57 V power= 83.0mW energy =0.83 uJ total energy =1.987 J=0.55 mWh

sample 786432: Uad =0.85 V power =124.2 mW energy =1.24 uJ total energy =2.055 J=0.57 mWh

sample 851968: Uad =0.96 V power =139.9 mW energy =1.40 uJ total energy =2.124 J=0.59 mWh

sample 917504: Uad =0.58 V power= 85.1mW energy =0.85 uJ total energy =2.193 J=0.61 mWh

sample 983040: Uad =2.33 V power =337.3 mW energy =3.37 uJ total energy =2.283 J=0.63 mWh

sample 1048576: Uad =2.27 V power =328.9 mW energy =3.29 uJ total energy =2.514 J=0.70 mWh

sample 1114112: Uad =2.28 V power =329.6 mW energy =3.30 uJ total energy =2.738 J=0.76 mWh

sample 1179648: Uad =2.29 V power =331.7 mW energy =3.32 uJ total energy =2.960 J=0.82 mWh

sample 1245184: Uad =3.17 V power =457.1 mW energy =4.57 uJ total energy =3.198 J=0.89 mWh

sample 1310720: Uad =0.00 V power= 0.7 mW energy =0.01 uJ total energy =3.378 J=0.94 mWh

sample 1376256: Uad =0.00 V power= 0.7 mW energy =0.01 uJ total energy =3.378 J=0.94 mWh

-------------------- Summary ---------------------

Filename : myscope / windows_start.log

Numer of samples : 1400859

Program runtime : 14.008590 sec = 0.23 min

Consumed energy : 3.378288 Joule

Average power : 241.158335 mW

--------------------------------------------------

The energy calculator module evaluates for the windows boot process an average
power consumption of 241mW , which is fits the specification of the PXA255 data
sheet (table 6.2).



7. Conclusion and Future Work

7.1. Conclusion

The task of this project thesis was to design and implement a framework for auto-
matic measurement of embedded-software energy consumption in an XScale plat-
form. Different parts required for the framework were composed for achieving the
task of automatic measurement. The instrumentation amplifier printed circuit board
was manufactured and checked for its quality. Universal Bootloader was installed on
the target board using a home-made JTAG adapter for loading the program images
automated over the network interface. A big software repository including many
different sorting algorithms was generated but could not be evaluated caused by
the limited time of this project thesis. Different tests with several programs were
made to prove the reliability of the framework. It is still too early to provide a final
conclusion covering the whole energy measurement topic but the composition of all
relevant subsystems is tested and the results acquired so far seem very promising.

7.2. Future work

Migration to other target platforms: This project thesis only targets the DevkitIDP
platform. But the migration to any other platform is imaginable. As described in
chapter 4.3 the current floating through a sense resistance into a part of the system
(e.g. CPU) is measured. Caused by the instrumentation amplifier with adjustable
gain this sense resistance can be placed next to each power drain.

Multiple measurement channels: The current version of the platform only uses one
analog input channel of the NI-PCI-6032E analog converter card. This channel mea-
sures the energy consumption of the application processor. For several applications
it is desirable that also the energy consumption of other parts of the system can be
measured. Additional measurement channels require additional amplifier modules.
For this purpose amplifier integrated circuits with more than one output can be
used. The second important part after the processor is the volatile memory (RAM
and external cache). Most program variables and also the program code itself is
located in the memory, thus the memory is frequently accessed. It is possible that
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the next version of an energy measurement framework has multiple channels: CPU,
Caches, RAM, Chipset and Non-volatile memory (FLASH, Hard discs).

GCC power optimization: Like described in chapter 6.1.1 the GNU GCC compiler[23]
is capable of optimizing the generated binaries in different ways (see table 6.1). In
normal operation it does not optimize the binary at all but it can be instructed to
optimize it on the one hand for execution speed or on the other hand for the binary
file size. In case of the execution speed optimization (gcc -O2), the code is tweaked
for runtime. Thus the program runtime decreases and the processor (maybe other
components too) can switch to an energy save idle or standby mode earlier which
may result in less energy consumption than without optimization (assumed that
the optimized code does not consume much more energy than the original version,
this is something to evaluate). The program size optimization (gcc -Os) results in
smaller binaries. Thus there are less memory (hard disc, flash etc.) accesses required
and the program can be loaded faster. The shorter program-loading time and less
memory accesses may also lead to less energy consumption. GCC and most other
compilers like the Intel C++ compiler[25] are absolutely not capable of optimizing
the program specially for the energy consumption. It would be desirable that com-
pilers provide options for generating energy aware executables (e.g. gcc -Oe). For
providing a efficient power optimization scheme a multi channel power measurement
platform is needed for improving and verifying the results of the compiler.
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A. U-Boot Command Set

The Universal Bootloader has an extensive command set. In the framework only
the commands tftpboot and bootm are used.

Command Description

autoscr Run script from memory
bdinfo Print Board Info structure
ds Disassemble memory
as Assemble memory
break Set or clear a breakpoint
step Single step execution.
next Single step execution, stepping over subroutines.
where Print the running stack.
rdump Show registers.
bmp Manipulate BMP image data
info imageAddr display image info
go Start application at address ’addr’
reset Perform RESET of the CPU
bootm Boot application image from memory

boot Boot default, i.e., run ’bootcmd’
bootd Boot default, i.e., run ’bootcmd’
iminfo Print header information for application image
imls List all images found in flash
icache Enable or disable instruction cache
dcache Enable or disable data cache
coninfo Print console devices and information
date Get/set/reset date and time
getdcr Get an AMCC PPC 4xx DCR’s value
dcrn Return a DCR’s value.
setdcr set an AMCC PPC 4xx DCR’s value
dcrn Set a DCR’s value.
diag Perform board diagnostics
doc Disk-On-Chip sub-system
info Show available DOC devices
tftpboot Boot image via network using TFTP protocol

eeprom EEPROM sub-system
bootelf Boot from an ELF image in memory
bootvx Boot vxWorks from an ELF image
ext2ls List files in a directory (default /)
fatload Load binary file from a dos filesystem
fatls List files in a directory (default /)
fatinfo Print information about filesystem
fdcboot Boot from floppy device
fdosls List files in a directory
flinfo Print FLASH memory information
erase Erase FLASH memory
protect Enable or disable FLASH write protection
fpga Loadable FPGA image support
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imd i2c memory display
imm i2c memory modify (auto-incrementing)
inm Memory modify (constant address)
imw Memory write (fill)
icrc32 Checksum calculation
iprobe Probe to discover valid I2C chip addresses
iloop Infinite loop on address range
isdram Print SDRAM configuration information
chip Print SDRAM configuration information
ide IDE sub-system
reset Reset IDE controller
siuinfo Print System Interface Unit (SIU) registers
sitinfo Print System Integration Timers (SIT) registers
icinfo Print Interrupt Controller registers
carinfo Print Clocks and Reset registers
iopinfo Print I/O Port registers
iopset Set I/O Port registers
dmainfo Print SDMA/IDMA registers
fccinfo Print FCC registers
brginfo Print Baud Rate Generator (BRG) registers
i2cinfo Print I2C registers
sccinfo Print SCC registers
smcinfo Print SMC registers
spiinfo Print Serial Peripheral Interface (SPI) registers
muxinfo Print CPM Multiplexing registers
siinfo Print Serial Interface (SI) registers
mccinfo Print MCC registers
loads Load S-Record file over serial line
loads Load S-Record file over serial line
saves Save S-Record file over serial line
saves Save S-Record file over serial line
loadb Load binary file over serial line (kermit mode)
hwflow Turn the harwdare flow control on/off
log Manipulate logbuffer
info Show pointer details
md Memory display
mm Memory modify (auto-incrementing)
nm Memory modify (constant address)
mw Memory write (fill)
cp Memory copy
cmp Memory compare
crc32 Checksum calculation
crc32 Checksum calculation
base Print or set address offset
loop Infinite loop on address range
loopw Infinite write loop on address range
mtest Simple RAM test
mdc Memory display cyclic
mwc Memory write cyclic
mii MII utility commands
device List available devices
mii MII utility commands
device List available devices
irqinfo Print information about IRQs
sleep Delay execution for some time
mmcinit Init mmc card
nand NAND sub-system
info Show available NAND devices
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nboot Boot from NAND device
printenv Print values of all environment variables
setenv Set environment variables
saveenv Save environment variables to persistent storage
askenv Get environment variables from stdin
run Run commands in an environment variable
pci List and access PCI Configuration Space
pinit PCMCIA sub-system
on Power on PCMCIA socket
out Write datum to IO port
in Read data from an IO port
reginfo Print register information
scsi SCSI sub-system
reset Reset SCSI controller
sspi SPI utility commands
usb USB sub-system
reset Reset (rescan) USB controller
usbboot Boot from USB device
usb USB sub-system
reset Reset (rescan) USB controller
vfd Load a bitmap to the VFDs on TRAB
version Print monitor version
echo Echo args to console
test Minimal test like /bin/sh
exit Exit script
help Print online help
kgdb Enter gdb remote debug mode
cls Clear screen



B. Acquisition Software Details

This appendix offers a deeper look into the implementation of the data acquisition
module myscope like described in chapter 5.3.2 on page 24.

Listing B.1: myscope.cpp data acquisition and COMEDI implementation details

// comedi

#include <comedilib.h>

// comedi variables

sampl_t *map;

unsigned int chanlist [256];

int value=0;

int subdevice=0;

int channel =0;

int aref=AREF_GROUND;

int range=0;

int n_chan=1;

int n_samples = 0;

double freq=100000.0;

volatile bool quit;

double ref0 = -10.0;

double ref1 = 10.0;

// ///////////////////////////////////////////////////////////

// prepare comedi command

int prepare_cmd(comedi_t *dev ,int subdevice ,comedi_cmd *cmd)

{

memset(cmd ,0,sizeof(*cmd));

cmd ->subdev = subdevice;

cmd ->flags = 0;

cmd ->start_src = TRIG_NOW ;

cmd ->start_arg = 0;

cmd ->scan_begin_src = TRIG_TIMER;

cmd ->scan_begin_arg = (int)(1e9/freq);
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cmd ->convert_src = TRIG_TIMER;

cmd ->convert_arg = 1;

cmd ->scan_end_src = TRIG_COUNT;

cmd ->scan_end_arg = n_chan;

if (n_samples)

{

// limit sampes

cmd ->stop_src = TRIG_COUNT;

cmd ->stop_arg = n_samples;

}

else

{

// infinite sampling

cmd ->stop_src = TRIG_NONE;

cmd ->stop_arg = 0;

}

cmd ->chanlist = chanlist ;

cmd ->chanlist_len = n_chan;

return 0;

}

// ///////////////////////////////////////////////////////////

// initialize comedi

comedi_t *init_comedi(

int *size , char *filename ="/dev/comedi0")

{

comedi_cmd c,*cmd=&c;

comedi_t *dev;

int ret;

dev = comedi_open(filename );

if (!(dev)) {

comedi_perror(filename );

exit(1);

}

*size = comedi_get_buffer_size(dev ,subdevice);

printf("buffer size is %d\n",*size);
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map=(sampl_t *)mmap(NULL , *size , PROT_READ ,MAP_SHARED ,

comedi_fileno(dev), 0);

if (map == MAP_FAILED)

{

perror( "mmap" );

exit(1);

}

for (int i=0;i<n_chan;i++)

{

chanlist [i]=CR_PACK(channel+i,range ,aref);

}

prepare_cmd(dev , subdevice ,cmd);

ret = comedi_command_test(dev , cmd);

ret = comedi_command_test(dev , cmd);

if (ret != 0) {

fprintf(stderr ,"command_test failed\n");

exit(1);

}

ret = comedi_command(dev ,cmd);

if (ret < 0) {

comedi_perror("comedi_command");

exit(1);

}

return dev;

}

// ///////////////////////////////////////////////////////////

// read number of bytes in the streaming buffer

long int bufsize = comedi_get_buffer_contents(dev ,subdevice);

if (bufsize < 0)

{

// COMEDI error => finish program

printf("ERROR: comedi_get_buffer_contents error\n");

break;

}

else if (bufsize == 0)

{

// no data received

}

else
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{

// data received in samples[i]

}

// ///////////////////////////////////////////////////////////

// close comedi interface

{

int ret = comedi_cancel(dev ,subdevice);

if (ret)

{

printf("ERROR: comedi_cancel: %d\n",ret);

}

ret = comedi_unlock(dev ,subdevice);

if (ret)

{

printf("ERROR: comedi_unlock: %d\n",ret);

}

ret = comedi_close(dev);

if (ret)

{

printf("ERROR: comedi_close: %d\n", ret);

}

}

Listing B.2: myscope.cpp graphics and SDL implementation details

// SDL library

#include <SDL/SDL.h>

#include <SDL/SDL_gfxPrimitives.h>

#include <SDL/SDL_imageFilter.h>

// display setup

#define WIDTH 800

#define HEIGHT 600

#define DEPTH 24

// ...

// ///////////////////////////////////////////////////////////

// draw a horizontal line of specific voltage

void addVoltLine(SDL_Surface *surface , double volt ,

Uint32 col = 0x009000ff , char *description = "")

{

int y = HEIGHT/2 - voltToPixel(volt);
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char str [64];

sprintf(str , "%.2lfV %s", volt , description);

hlineColor(surface , 0, WIDTH -1, y, col);

stringColor(surface , 10, y-10, str , col);

}

// ///////////////////////////////////////////////////////////

// draw background to screen

void DrawBackground(SDL_Surface *screen ,

SDL_Surface *background)

{

SDL_BlitSurface(background , NULL , screen , 0);

}

// ///////////////////////////////////////////////////////////

// update screen and view the actual curve

void DrawCurve(SDL_Surface* screen , SDL_Surface *average ,

sampl_t *samples , long int back , long int front ,

long int size , sampl_t triggerPoint , int mode)

{

static int oldMin = 4095;

static int oldMax = 0;

static int oldY = -1;

static int oldX = 0;

long int sampleFront = front / sizeof(sampl_t);

long int sampleBack = back / sizeof(sampl_t);

int min = 4095;

int max = 0;

//

min += 5;

max -= 5;

if (min > 4095) min = 4095;

if (max < 0) max = 0;

// find start sample: trigger rising edge

sampl_t oldS = 4096;

int startX = 0;

// periodic mode

for (int x = 0; x < screen ->w; x++ )

{

sampl_t s = samples [(x+back/sizeof(sampl_t))

% (size/sizeof(sampl_t))];
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// trigger detection

if (startX == 0)

{

if ((oldS < triggerPoint) && (s >= triggerPoint))

{

startX = x;

}

}

// max / min detection

if (s > max) max = s;

if (s < min) min = s;

oldS = s;

}

if (mode == 1)

{

// periodic mode

// show min and max -line

oldMin += 5;

oldMax -= 5;

if (min < oldMin)

{

oldMin = min;

}

if (max > oldMax)

{

oldMax = max;

}

addVoltLine(screen ,

sampleToVolt(oldMin), 0x0000ffff , "min");

addVoltLine(screen ,

sampleToVolt(oldMax), 0x0000ffff , "max");

// make old graph darker

boxColor (average ,0,0,WIDTH -1,HEIGHT -1,30);

oldY = -1;

for (int x = 0; x < screen ->w; x++ )

{
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sampl_t s = samples [( startX+x+back/sizeof(sampl_t

)) % (size/sizeof(sampl_t))];

int y = HEIGHT/2 - SampleToPixel(s);

if (y < 0) y = 0;

if (y > (screen ->h-1)) y = screen ->h-1;

// pixelRGBA(screen , x, y, 255, 255, 0, 255);

if (oldY != -1)

{

lineRGBA (average , oldX , oldY , x, y, 255, 255,

0, 255);

}

oldY = y;

oldX = x;

}

}

else if (mode == 2)

{

// slow mode

for (long int i = sampleBack; i < sampleFront; i+=20)

{

int x = (i / 2000L) % screen ->w;

int y = getSampleY(i, screen , size , samples);

while (oldX != x)

{

oldX++;

if (oldX >= WIDTH) oldX = 0;

vlineColor(average , oldX , 0, HEIGHT -1, 0xff);

if (x == oldX)

{

if (x < WIDTH -1)

vlineColor(average , x+1, 0, HEIGHT -1,

0x0000a0ff);

}

}

pixelRGBA(average , x, y, 255, 255, 0, 255);

//if (oldY != -1) lineRGBA (average , oldX , oldY , x

, y, 255, 255, 0, 255);

oldY = y;

oldX = x;

}

}

else
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{

printf("ERROR: unknown display mode\n");

}

// add graph to screen

SDL_SetColorKey(average , SDL_SRCCOLORKEY , 0);

SDL_BlitSurface(average , NULL , screen , 0);

SDL_Flip (screen);

}

// ///////////////////////////////////////////////////////////

// initialize sdl

void init_sdl (SDL_Surface **screen)

{

if (SDL_Init (SDL_INIT_VIDEO) < 0) exit(1);

if (!(*screen = SDL_SetVideoMode(WIDTH , HEIGHT , DEPTH ,

SDL_SWSURFACE|SDL_HWPALETTE))) // |SDL_FULLSCREEN

{

SDL_Quit ();

exit(1);

}

}

// ///////////////////////////////////////////////////////////

// main function

int main(int argc , char *argv[])

{

// ...

// initialize SDL

if (enableDisplay)

{

init_sdl (& screen);

// generate the background image

background = SDL_CreateRGBSurface(0, WIDTH , HEIGHT ,

DEPTH , 0xff0000 , 0x00ff00 , 0x0000ff , 0);

if (! background)

{

printf("ERROR: SDL_CreateRGBSurface\n");

}

for (double volt=0.0; volt <=9.0; volt += 2.5)
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{

addVoltLine(background , volt);

if (volt != 0.0) addVoltLine(background , -volt);

}

if (enableDisplay == 1)

{

// periodic mode with trigger

addVoltLine(background , trigger , 0x900000ff , "

trigger");

}

// generate "average"-surface

average = SDL_CreateRGBSurface(0, WIDTH , HEIGHT ,

DEPTH , 0xff0000 , 0x00ff00 , 0x0000ff , 0);

if (! background)

{

printf("ERROR: SDL_CreateRGBSurface\n");

}

}

// ...

// main loop

while((! quit) && (( n_samples == 0) || (n_samples >

samples_read)))

{

// ...

// display data if requested

if (enableDisplay)

{

DrawBackground(screen , background);

DrawCurve(screen , average , map , back , front , size

, voltToSample(trigger), enableDisplay);

}

// ...

// poll SDL events if display is enabled

if (enableDisplay)

{

while(SDL_PollEvent(& event))

{

switch (event.type)

{
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case SDL_QUIT :

quit = 1;

break;

case SDL_KEYDOWN:

// quit = 1;

break;

}

}

}

}

// ...

SDL_Quit ();

return EXIT_SUCCESS;

}


